PROGYSAT, 2nd Seminar - Paramaribo (September

Brief overview of the contribution of satellites to the understanding of environment and its

current changes

cnes

IRD DEPUTY FOR FRENCH GUYANA

Atmospheric carbon dioxide concentration for the past 800 000 years

In 2020, atmospheric CO2 exceeded 410 ppm

Source: NOAA

Heat excess in the system: The ocean stores 93% of the additional heat trapped in the climate system by greenhouse gases emitted by human activities

IPCC AR5; Von Schuckmann et al., 2016

Art 4 Art 5 Art 7 Art 8 Art 9 Art 10 Art 11 Art 12 Art 13 Art 14

COP21 · CMP11 PARIS 2015

UN CLIMATE CHANGE CONFERENCE

*Paris Agreement Article 7 (7c): Strengthening scientific knowledge on climate, including research, <u>systematic</u> <u>observation of the climate system and</u> <u>early warning systems.</u>

KING AND CONTROL CONTR

Systematic climate observations are fundamental to implementing the Paris agreement and monitoring its progress

OPP OS OF Strand

Art 7

(7c)

Systematic measurements : The key part played by the Satellites

Space-based observations provide a global perspective which contributes to improved understanding of the Earth system

→Dynamical interactions between
 atmosphere, ocean, land, ice and
 solid-Earth

..... and human Society

Space Gravimetry mission (GRACE 2002-)

Focus on two space techniques (other than sat imagery)

Satellite Altimetry missions (1992-)

MEAN SEA LEVEL IS RISING FASTER AND FASTER

In terms of global mean \rightarrow 2 main causes of sea level rise...

(1) Thermal expansion of sea water due to ocean warming (40% SLR)

(2) Fresh water input due to land ice melt and terrestrial water storage changes → ocean mass increases (60% SLR)

GIS

Regional rates of sea level change (1993-2020) (mm/yr)

Sea level trends from C3S | Jan 1993 - Jan 2020

Spatial trend patterns amplify the global mean rise
→ Regional rates can be up to 2-3 times larger than the global mean sea level rise

Regional Variability of the SLR in 2100 [difference to mean in %] (same for all GIEC scénarios)

Average water storage deficit over 2002-2015 from GRACE

Humphrey et al., 2016

Temporal change in water storage in a few large aquifers from GRACE

Famiglietti et al., 2014

IMERG V06C Early - precipitationCal 2022-09-01 19:00:00 - 19:29:59 UTC

decreases

م

 $\mathbf{\uparrow}$

Red

Sea Surface Salinity (SSS)

High Accuracy Altimetry

SENTINEL 3A of EU's COPERNICUS

SURINAME Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Google E

Hydroweb

← → C https://hydroweb.theia-land.fr/hydroweb/view/R_SURINAME_SURINAME_KM0309?lang=fr#

e :

Q 1

0

Limitations :

Not everywhere :

hence it can happen that it is not

sampling the very place that you want

Not every day:

It may miss important rapid variations

SWOT (CNES/NASA) : global coverage of Earth waters

SMASH : a Constellation for daily hydrometry worldwide

- 10 µ satellites in the same orbit plane
- 40k pre-defined targets for better efficiency
- worldwide
 - NRT delivery of the water levels
 Free access
 - Daily measurements
 - $\succ \sigma$ = 10 cm

Thanks for your attention

Special thanks to A. Cazenave, French Academy of Sciences

•SPARES

Un grand fleuve transfrontalier de Guyane : le Maroni

Un petit fleuve cotier de Guyane : la Mana

Differences rely on different reach widths, not on errors

SENTINEL 3A

SV SENTINEL on The Tampok tributary

Rio Pardo (Amazon Basin)

