

REMOTE SENSING OF MANGROVES

TO ANTICIPATE CHANGES

ON THE GUIANAS COAST

Christophe PROISY

Cayenne, French Guiana christophe.proisy@ird.fr

3rd PROGYSAT Workshop, Session 'Earth Observation and Application', 26-30 June 2023

Long-term partnerships with

The Amapá-Guianas coast

- The world's longest muddy coast (1500 km): longshore redistribution of Amazonian sediments
- Drift of giant mudbanks: dominant macroscale geological controls
- Leading to considerable ecological and socio-economic impacts.

MANGROVES VERSUS CLIMATE CHANGE IN THE NORTH ATLANTIC ?

Mudbanks drift along the Guianas coast

Surinam

Guyana

French Guiana

Cape Orange

Brazil (Amapá)

Giant mudbanks

Spreading mangrove

Mangrove-based ecosystem

Diversity of plant forms and coastal environments

Diversity of habitats

Erosion may rage during inter-bank phases

Erosion impacts on mangroves

Erosion impacts on human infrastructures

But mangrove recover on new mudbanks

At the forefront of changes in the North Atlantic

Decadal wave regimes influenced by the NAO

Journal of Biogeography (J. Biogeogr.) (2015) 42, 2209-2219

Fluctuations in the extent of mangroves driven by multi-decadal changes in North Atlantic waves

Romain Walcker^{1,2}*, Edward Jamal Anthony³, Christophe Cassou⁴, Robert Curwood Aller⁵, Antoine Gardel⁶, Christophe Proisy⁷, Jean-Michel Martinez⁸ and François Fromard^{1,2}

Wave swells caused by extreme climatic events can reach the Guianas

El Niño (persistent drought) and La Niña (persistent flooding) ?

- 1. Mortality of mangrove forests
- 2. Indirect effects (insect infestation and defoliation)

Towards a regional mangrove observatory

Explaining coastal vulnerability through multiscale modelling

Seasonal coastal vulnerability to erosion by waves

Anticipating regional coastal vulnerability with mangroves

Ad hoc satellite-based methods now scientifically ~operational

•••

Orseau et al. (2020). Decadal-scale morphological evolution of a muddy open coast.

https://doi.org/10.1016/j.margeo.2019.106048

Abascal Zorrilla et al. (2018). The Advantages of Landsat 8-OLI-Derived Suspended Particulate Matter Maps for Monitoring the Subtidal Extension of Amazonian Coastal Mud Banks (French Guiana).

https://doi.org/10.3390/rs10111733

Gardel et al. (2022). A remote sensing-based classification approach for river mouths of the Amazon-influenced Guianas coast. <u>http://doi.org/10.1007/s10113-022-01913-3</u>

Brunier et al. (2019). Exceptional rates and mechanisms of muddy shoreline retreat following mangrove removal. https://doi.org/10.1002/esp.4593 Proisy et al. (2016). A multiscale simulation approach for linking mangrove dynamics to coastal processes using remote sensing observations. <u>https://doi.org/10.2112/SI75-163.1</u>

Proisy et al. (2021). Mangroves: a natural early warning system of erosion on open muddy coasts in French Guiana. https://doi.org/10.1016/B978-0-12-816437-2.00011-2

Proisy et al. (2016). Mangrove forest dynamics using very high spatial resolution optical remote sensing. http://dx.doi.org/10.1016/B978-1-78548-160-4.50007-8

Proisy et al. (2009). Mud bank colonization by opportunistic mangroves. <u>https://doi.org/10.1016/j.csr.2008.09.017</u> Proisy et al. (2007). Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. <u>https://doi.org/10.1016/j.rse.2007.01.009</u>

.

Mudbanks